
CS 687 Empirical Software Engineering Project

Fall 2009

IN PROGRESS - NOT YET COMPLETE!!!!!!

Second UK Workshop on Experimental Software Engineering

Program Chair: Jane Hayes

Program Committee: CS 687 students

The University of Kentucky Workshop on Experimental Software Engineering provides a

forum for discussing current experimental studies in the field of software engineering.

Papers are solicited for the studies listed in this CFP, as well as for other studies.

Accepted papers will not be published in any conference proceedings. Submitted papers

must not have been published previously, but they may be submitted elsewhere in the

future. All submitted papers will be accepted.

Full-Length Papers: Papers should be submitted 1.5 or double-spaced in a font size no

smaller than 11 points, fully justified. Papers must not exceed 25 double-spaced pages

including references and figures, and will not be refereed by external reviewers. All

papers should indicate what is interesting about the presented work. The first page should

include an abstract of maximum 150 words, a list of keywords, and the complete address

(including phone and e-mail address) of the author. The citations and references should

be formatted in standard software engineering format, that is, with bracketed citations

("[1]") and citation keys that are either numeric or strings based on the authors' names

("[Basi91]").

Artifact Submission: All software artifacts that you use must be submitted to the

SEEWeb experimental software repository and the PROMISE software engineering

repository.

Presentations: You will be allowed 25 minutes for your presentation, including 5 minutes

for questions – this is subject to change based on number of students.

Submission Procedure: Three hard copies of a first draft of each paper must be submitted

before 27 October to Program Chair J. Hayes (unless conference paper system is up).

Each paper will receive at least three reviews, one from the program chair and two from

program committee members. Reviews will be returned on 3 November, and the final

paper must be submitted electronically by 17 November. Final papers must be submitted

in either PDF or DOC format. The final paper must be single spaced and in 10 point font

(~10 pages – suggest that you use this format:

http://conferences.cis.unisa.edu.au/2006/tabletop2006/IEEE/Format/instruct.htm).

Milestones Date

Topic selection: 158 September

Experimental design review: 292 September

Draft paper submitted: 27 October3 November

Reviews due: 103 November

Final paper submitted: 2417 November

Presentations: 2417 November to end of class

SUGGESTED TOPICS LIST – this is very preliminary and will be updated

Following is a list of suggested topics for your empirical study. You may choose any

topic you wish, either from this list or something of your own creation. I specifically

encourage you to consider carrying out an experiment related to your current research.

You will notice that most of these studies do not involve much if any programming but

some will involve a lot of program execution. Also, these studies can be done more easily

with clever use of shell scripts. There can be a fair amount of overlap between these

studies, and you may want to share programs, test data sets, or other artifacts. Trading of

this kind of experimental artifacts is greatly encouraged.

Some of these studies could use a partner to carry out some of the work, so as to avoid

bias from having one person conduct the entire experiment. I encourage you to help each

other; please communicate among yourselves if you need help ... ask and offer.

These descriptions are concise overviews ... I will be available to discuss each project

individually during office hours and through email.

 Empirical Studies Suggestions – from Jeff Offutt

 1. *Java mutation experiments:* One resource we have available is a

 mutation testing system for Java, mujava

 <http://ise.gmu.edu/%7Eoffutt/mujava/>. Instructions for

 downloading, installing, and running mujava are available on the

 website. There are several small experiments you could use mujava

 to run.

 * Test criterion comparison. For a collection of programs,

 develop tests that kill all mutants, and develop tests that

 satisfy another criterion (data flow, MCDC, edge-pair, input

 parameter modeling, etc.). Compare them on the basis of

 number of tests and on their fault finding abilities.

 * Mutation operator evaluation. One key to mutation testing is

 how good the operators are. Most of the class-level mutation

 operators are fairly new, and it is possible that some are

 redundant and others have very little ability to detect

 faults. It would be helpful to have an experiment to

 evaluate the operators, based on their abilities to find

 faults, redundancy, or frequency of equivalence.

 * Mutation as a fault seeding tool. One use of mutation is to

 create faults for other purposes, for example, to compare

 other testing techniques.

 2. Web Modeling and Testing Evaluation: I have recently proposed a

 method for modeling the presentation layer of web applications.

 This model can be used to generate tests, among other things. If

 you have access to a reasonably sized web application, it would be

 very interesting to apply this test method to evaluate its

 effectiveness. A draft paper is available upon request. – note from Dr. Hayes (please

see me and I will request the paper from Dr. Offutt)

 3. *Software Engineering Factoids:* We have a lot of truisms about

 software engineering. These are small facts, or "factoids" that

 "everybody knows" is true, yet the source for these factoids are

 lost in the mists of time. Some are based on data from the 1970s,

 some are based on 30 year old casual observations, and some were

 probably made up by speakers who wished for a fact to support some

 point. By now, "everybody" accepts these factoids as truth, yet

 they may no longer be true or may have never been true! A few

 example factoids are:

 * 80% of bugs are in 20% of the code.

 * 60% of maintenance is perfective, 20% is adaptive, and 20%

 is additive.

 * 10% of programmers are 10 times more productive than the

 other 90%.

 * Software is 2/3 maintenance, and 1/3 development.

 * 90% of software is never used.

 * The number of parameters to subroutines is always small.

 * Object-oriented software is less efficient.

 I am sure that you can think of more. The goal of this project

 would be to verify one or more of the factoids. This would require

 three steps: (1) find the old sources for the factoid, who

 originated it, what the fact was based on, and where it was used;

 (2) verify whether the factoid is true for current systems; and

 (3) quantify the correct version of the factoid as best as you can

 from current data.

 4. *Metrics Comparison:* Researchers have suggested a large number of

 ways to measure the complexity and/or quality of software. These

 software metrics are difficult to evaluate, particularly on an

 analytical basis. A interesting project would be to take two or

 more metrics, measure a number of software systems, and compare

 the measurements in an objective way. The difficult part of this

 study would be the evaluation method: How can we compare different

 software metrics? To come up with a sensible answer to this

 question, start with a deeper question: What do we want from our

 metrics?

 5. Frequency of Infeasible Subpaths in Testing: Many structural

 testing criteria exhibit what is called the /feasible path

 problem/, which says that some of the test requirements are

 infeasible in the sense that the semantics of the program imply

 that no test case satisfies the test requirements. Equivalent

 mutants, unreachable statements in path testing techniques, and

 infeasible DU-pairs in data flow testing are all instances of the

 feasible path problem. For example, in branch testing, one branch

 might be executed if /(X = 0)/ and another if /(X != 0)/; if the

 test requirements need both branches to be taken during the same

 execution, the requirement is /infeasible/. This study would

 determine, for a sample of programs, how many subpaths that are

 required to be executed by some test criterion are infeasible. A

 reference on the subject of the feasible path problem can be found

 on my web site: _Automatically Detecting Equivalent Mutants and

 Infeasible Paths_

 <http://ise.gmu.edu/faculty/ofut/rsrch/abstracts/cbt-equiv.html>.

 6. *Traceability experiments:* Much work is being done in the tracing of textual

artifacts in an automated manner in the SVV Lab at UK. A number of experiments could

be run, such as: how well does the tracing tool RETRO perform on source code or other

structured artifacts? If the textual information from a graphical artifact such as a UML

diagram was entered into RETRO, how well does RETRO perform on tracing?

Senthil Sundaram, a PhD student in the SVV Lab, has some ideas for experimentation in

this area. Please contact him for additional information.

What are some ways to measure whether or not a high level requirement has been

satisfied by its children elements? Does one method work better than another? Or with

less bias? Ashlee Holbrook, a PhD student in the SVV Lab, has some ideas for

experimentation in this area. Please contact her for additional information. – this is

outdated…. Wei-Keat Kong and Jody Larsen are working in this area now – Ashlee and

Senthil now go by “Dr.”!

7. Empirical Experiments in Re-Factoring and Maintainability: Several models for

maintainability have been developed in the SVV lab. Some data is available for building

or validating models for things such as: estimating the number of changes that a class

will require, estimating the effort needed to change a class, etc. Liming Zhao, a PhD

student in the SVV Lab, has some ideas for experimentation in this area. Please contact

him for additional information at lzhao2@uky.edu.

8. Dr. Dekhtyar has some ideas for a study that looks at how analysts work with

traceability tool output. This study requires getting at least two groups of people to look

over traceability results. He will give me more details next week.

